A 2013 study from Philippon et al. found that over 1/3 of 10-12 year old hockey players have a structural change in their hips that limits hip flexion range of motion. Roughly 1/2 have hip labral tears.

To your success,

Kevin Neeld
SpeedTrainingforHockey.com
HockeyTransformation.com
OptimizingAdaptation.com

P.S. For more information on how to assess movement and integrate specific strategies to improve mobility and movement quality in training, check out Optimizing Movement. Don’t have a DVD player? Send me a note through the contact page after you checkout here Optimizing Movement and I’ll get you a digital copy of the videos!

Enter your first name and email below to sign up for my FREE Sports Performance and Hockey Training Newsletter!

 

Last week I spent a few minutes talking to a goalie scout for USA Hockey about what limits performance, and therefore what we must assess and train. This will be the first in a series of posts, in which I hope to present our approach to training and how our underlying philosophy of assess-train/monitor-reassess influences our programming and results.

Understanding Range of Motion

Range of motion (ROM) is often referenced using other words like mobility or flexibility. It’s also largely viewed as a “more is better” quality and increasing ROM is often misunderstood as being protective from injury, despite research evidence to the contrary.

In order to understand whether it’s necessary or desirable to improve ROM, it’s first necessary to understand what can limit it. Each of these could be the topic of their own post (or book), but in the interest of providing a broad overview, ROM can be limited by:

1) Bony Structure
The shape and contour of articulating bones (e.g. the bones meeting at a joint) can influence ROM. As one example, I’ve written a lot about how the shape of the femoral head and/or hip socket can influence hip flexion and therefore squat depth (among other patterns): Training Around Femoroacetabular Impingement, Performance Training: Adaptations for Femoroacetabular Impingement. For another good example, check out this article from Dean Somerset on how pelvic structure can influence lateral movement (See: Pelvic Arch Design and Load Carrying Capacity

Femoroacetabular Impingement

You can’t stretch your through bony blocks.

2) Passive Restraints
Every joint, to some degree, is supported by ligaments that “check” ROM in certain directions. For example, the MCL of the knee helps prevent the inside of the knee from “opening” too far. Collectively, the surrounding ligaments help create some stability around a joint, and also provide feedback to the brain about where the joint is, how it’s moving, and how much load is being distributed across it. It’s quite possible, albeit almost never desirable, to stretch these restraints to allow more range of motion. This is extremely common in athletes like figure skaters and gymnasts.

Unfortunately, when these passive restraints are compromised, accessory joint motion is increased, meaning there is a little more sliding, gliding, and rolling within a joint, which ultimately increases the stress placed across other structures meant to improve joint congruency like the knee meniscus, hip and shoulder labrums, spinal discs, etc. This is one of the reasons why there is such a high incidence of osteoarthritis among these sporting populations, especially at young ages (e.g. <35 y/o); they’ve compromised some of their passive restraints so there’s more progressive erosion-like wear and tear across the joint.

3) Active Restraints
The muscles around joints provide active support. There are many reasons why a muscle/fascia may restrict motion around a joint, but I generally think of them in two simple buckets:

  1. The muscles aren’t strong enough to maintain stability in a certain range
  2. The brain interprets a certain position/motion as threatening or dangerous.

While very different, both of these buckets provide very simple explanations for why the various PNF methods work for improving ROM. Whether you view it as strengthening a muscle in a specific ROM, or simply demonstrating to the nervous system that producing force in a certain ROM doesn’t necessitate a painful/threatened response, the end result in situations where this is indeed the restriction is improved ROM.

The Big Picture
Hopefully, from this discussion, it’s apparent that improving ROM isn’t always desirable. Simply, there is always a cost to making improvement in any quality, and restrictions in ROM need to be interpreted on an individual basis based on what their structure allows. Attempting to force improved ROM beyond an individual’s structural capacity will necessarily lead to ligamentous laxity, excessive accessory joint motion and inevitably breakdown/degradation in the future. This may be the necessary cost of doing business for certain sports that require hypermobility (e.g. gymnastics, figure skating, etc.), but it’s advantageous to be aware of whether you’re increasing ROM beyond an individual’s capacity because it’s necessary to be successful in the sport or simply because you associate more as being better. In the case of the latter, if the improvements aren’t absolutely essential to the individual being competitive in their position within any given sport, the pursuit is not only a waste of time, it’s deleterious to their progress.

Excessive Flexibility

This is rarely the goal.

More specific to the origin of this conversation, careful attention needs to be paid to whether a goalie’s performance is actually being limited by their lack of ROM and whether this limitation is structural or functional, or whether the desire to improve ROM is based simply on the assumption that, within this position, more is better. Every individual brings different strengths and weaknesses to a position; maybe one individual’s strength is ROM, another’s is his/her ability to read the play and to position appropriately. I think we enter a dangerous situation when athletes and/or their coaches try to make improvements in any given athlete based on the desired profile of another without consideration to the structural and physiological strengths and weaknesses of the given athlete and the “role model”.

To be clear, I don’t think this is an easy distinction for athletes or sport coaches to make. Frankly, I don’t think most S&C coaches understand the difference. That said, one red flag to suggest you’re stealing ROM from an undesirable place is if you feel a restriction on the opposite side of the joint you’re stretching. For example, when you’re stretching your adductors/groin, if you feel a restriction on the outside/back of your hip, you’re not stretching anything, you’re jamming against your own joint’s restriction.

Optimizing Movement DVD Package

Optimizing Movement: Our System for Assessing Movement Capacity and Programming

This can be a tough distinction to make. If you have questions about your own personal situation, please feel free to post them below!

To your success,

Kevin Neeld
OptimizingMovement.com
UltimateHockeyTraining.com

Please enter your first name and email below to sign up for my FREE Athletic Development and Hockey Training Newsletter!

Get Ultimate Hockey Training Now!

“…an extremely rare comprehensive look at the present state of ice hockey training.”
“…a must-have for coaches and strength professionals at all levels of hockey.”

Ultimate Hockey Training

Although I often feel like I’m rambling, these “random thoughts” posts have become among the more popular on my site. Today’s post covers a few of my thoughts on wide range of topics from injury prevention to long-term athletic development, and includes some new research updates. If you find one (or all) of these points interesting, please share this post with your friends!

  1. Since the release of my new DVD set Optimizing Movement, I’ve been explaining the difference a lot between corrective exercise and a corrective approach. In a perfect world, I think every athlete should go through an assessment that provides a movement and performance profile of the athlete, and the athlete should receive a program that considers these findings, their goals, their stage in development, their injury history, their training history, and their current training availability/commitment. That said, one of the major goals of movement screening is to prequalify or disqualify certain movements/exercises for any given athlete. If you’re an astute observer of movement, I think you can do a lot of good by replacing certain exercises or altering how an exercise is performed based on the needs of the individual. In my experience, knowing what NOT to do with certain people is one of the biggest keys to keeping everyone healthy.
  2. Related to the above idea, my philosophy on ensuring that no one gets hurt during the training process is one I’ve borrowed from Mike Boyle, which I believe is heavily influenced by his experience working with pro athletes. Naturally, when there are literally millions of dollars on the line (and an athlete’s career), it’s EXTREMELY important that you weigh the risk:reward ratio of every component of your program. That said, this idea doesn’t only apply to professional athletes. From a programming standpoint, you can push a little hard and be a little “riskier” with youth athletes, but it’s still important to weigh the risks of any given training method. Athletic development takes THOUSANDS of hours of focused practice to develop and refine skill sets, the ability to read, anticipate, and react to the play, and to develop the athleticism necessary to compete at higher levels. The bottom line is that if an athlete is sidelined with an injury, they can’t develop. This is a major reason why I think many of the training methods used by high school athletes, despite getting “results”, aren’t optimal. Short-term gains are achieved at the expense of short- and long-term durability. If you had two methods to achieve the same results and one had negligible injury risk and the other had a track record of leading to nagging injuries in a significant proportion of the people using that method, wouldn’t you want to choose the safer one? …Say yes.
  3. Over the last few weeks, Matt Siniscalchi and I have been testing all of the players in a youth soccer organization. Between the two of us we’ve also tested hundreds of youth hockey players and a ton of athletes and “weekend warriors” across a wide range of ages and athletic abilities. One of the things that has really jumped out at me throughout this process is how common ankle mobility restrictions are, even at the youngest ages. We regularly see athletes that can’t reach 0 inches of dorsiflexion in the test we use; in other words, they can’t shift their knee forward to even pass their big toe without their heel coming up. There are a lot of reasons why someone may have limited ankle mobility, but I think two things will become apparent over time: 1) We need to put a much greater focus on ankle mobility work in our programs (even more than we do now); 2) More information will come out demonstrating structural differences in ankle anatomy and how the stresses we do or do not place across the joint can lead to progressive structural changes that further limit ankle range of motion. Just as we see an increased attention paid to Femoroacetabular Impingement (FAI) at the hip, I think we’ll see more information about how similar adaptations occur at the ankle, and at the shoulder.
  4. I haven’t read this full study, but after reading the abstract, I believe this is further evidence for progressive limitations (and probably structural changes) in hip range of motion consistent with FAI, but this time in female soccer players (instead of hockey players, which has been the major focus of this research up to this point). Check it out here: Abnormal hip physical examination findings in asymptomatic female soccer athletes
  5. Increasing alpha angle is predictive of athletic-related “hip” and “groin” pain in collegiate National Football League prospects. This was a study I mentioned in my presentation at the Boston Sports Medicine and Performance Group Summer Seminar last year. Interestingly, 90% of the players and 87% of the hips included in this study had a finding consistent with FAI, with the more progressive cases being more likely to cause symptoms. In this case, the target population was NFL prospects playing college football. See the trend here? It’s important to be on the lookout for these adaptations in ALL athletes.
  6. Adductor squeeze test values and hip joint range of motion in Gaelic football athletes with longstanding groin pain. This study builds on research now over a decade old from Timothy Tyler’s group suggesting that adductor weakness may be a risk factor for groin pain. Anecdotally, I’ve seen others and have personally treated cases where the athlete presents with pain and when they squeeze something between their knees, it’s weak, shaky, and often painful. While it may be easy to conclude that the weakness is causing the shakiness and is an underlying factor of pain, the interesting thing is that in many of these cases, doing something to improve the alignment/positioning of the pelvic ring (SI Joint around through the pubic symphysis) and following it up with some basic activation work often reduces the pain, restores strength, and gets rid of the shakiness. In these cases, weakness is the result of inhibition, not demonstrative of a lack of strength. Remove the inhibition (which could be caused by a slight alignment issue) and strength restores. I have seen cases where weakness persists and consistently doing some basic strengthening work helps get the athlete over the nagging injury that has bothered them for several months in some cases, but these cases seem to be less frequent than the inhibition-based weakness ones.
  7. As a culture, I think we overstretch hamstrings and groins, and under stretch glutes and quads. This is likely the result of the standing toe touch or sit and reach test being used as the primary bench mark of flexibility and a general lack of understanding that there is a range of optimal flexibility below OR ABOVE which problems are more likely to occur. Everyone should be able to touch their toes; it’s not necessary and in fact is detrimental to be able to palm the floor.
  8. After spending ~50-60 hours in a training facility each week for the past 5 years, I’m starting to appreciate training to quieter music. We listen almost exclusively to Pandora channels at our facility, so it’s nice to get a break from techno, rap, and hard rock for an hour or so each day. Miguel Aragaoncillo turned me on to Nujabes Radio, which has a lot of good instrumentals, and we’ve been listening to a lot of Clint Mansell Radio, who did the music for Requiem For A Dream, but the station also plays a lot of Hans Zimmer, who did the music for Inception. It’s a nice change of pace for sure!
  9. Speaking of Miguel, he recently wrote a great post highlighting an exercise we’ve been using in a lot of our programs recently. I’ve been programming quadruped exercises since Day 1, but these crawling variations make the core stress a bit more dynamic. There is a great perturbation variation at the end of the first video in Miguel’s post. Check it out here: Core Exercises You’re Not Doing: Bear Crawls
  10. One of the most frustrating realities of athletic development is that the link between early and future successes is not strong. Simply, you cannot predict whether an athlete will be successful when they’re older based on how they perform at younger ages. This is especially true during the 8-16 time span, where all hell breaks loose as kids develop different systems at extremely different rates compared to their peers. If you’re a parent, be patient and support your kids’ passions. If you’re a coach, teach and reward positive behaviors and attitudes, not outcomes.

That’s a wrap for today. If you have any questions/comments, please feel free to post them below.

To your success,

Kevin Neeld
OptimizingMovement.com
UltimateHockeyTraining.com

P.S. If you haven’t signed up, for FREE, for the 2014 Sports Rehab to Sports Performance Teleseminar, do it now here: Sports Rehab to Sports Performance Teleseminar

Please enter your first name and email below to sign up for my FREE Athletic Development and Hockey Training Newsletter!

Get Optimizing Movement Now!

“…one of the best DVDs I’ve ever watched”
“A must for anyone interested in coaching and performance!”

Optimizing Movement DVD Package

Click here for more information >> Optimizing Movement

If you’re reading this from the U.S., I hope you and your family enjoyed a Happy Thanksgiving yesterday! I’m still fighting off a pie coma, but was able to get some writing done earlier in the week so the day wouldn’t be a complete loss. Enjoy!

Over the last several years, I’ve written a lot about the importance of assessing athletes and integrating corrective work into their training programs. More recently, I’ve discussed some of the principles of PRI, especially as they pertain to predictable asymmetries in the hips of hockey players. If you only read what I’ve written about these topics, it’s likely you have a very skewed understanding of what actually goes on at our facility.

Today’s article will be the first in a series that dives deeper into my training philosophy, and more importantly, the systems we’ve put in place to ensure our athletes are making progress on the full spectrum of athleticism.

Structural Adaptations: Not Just a Hockey Problem

Several months ago, I wrote an article highlighting the results of several research studies published in the last few years (See: Groundbreaking Research on Hockey Hip Injuries. More specifically:

  1. A 2011 study from Silvis et al. found that 77% of the 39 NCAA D1 and pro hockey players had abnormal hip/groin MRI findings that were indicative of pathology, despite being entirely asymptomatic.
  2. A 2012 study from Birmingham et al. linked FAI (a bony overgrowth at femoral head/neck and/or acetabular hood) to increased motion at the pubic-symphysis, a precursor to osteitis pubis and potentially sports hernias.
  3. A 2013 study from Philippon et al. demonstrated that by the time youth hockey players reach the Midget age level (16-19 y/o), 93% of players have overgrowths consistent with FAI and 93% have labral tears.
  4. A 2013 study from Jakoi et al. found that NHL players were less productive in the 2 years following sports hernia surgery than they were prior to the surgery.

Because of the title, you may have glossed over another important statistic:

  1. A 2013 study from Larson et al. found that 90% of the 125 NFL prospects currently competing at the college level they looked at and 87% of the hips had findings consistent with FAI. Of these players, those with symptoms tended to have a greater prevalence of CAM or Mixed FAI and osteitis pubis, but the only independent predictor of groin pain was how much bony overgrowth their was.

Other evidence from Hack et al. (2010) suggests that roughly 1 out of every 4 asymptomatic men in the general population will also have some degree of FAI. Switching joints, a now nearly 20 year old study from Jensen et. al (1994), found that 64% of the 98 asymptomatic people that underwent an MRI of their lumbar region had abnormal findings. A 2002 study from Miniaci et al. found that 79% of the 28 asymptomatic shoulders of pro baseball pitchers had labral abnormalities.

Anecdotally, hockey players are more likely to possess a structural change known as hip retroversion, which essentially allows them more hip external rotation and less hip internal rotation. This is likely an adaptation resulting from skating a lot during the developmental years. Similarly, baseball pitchers (and all athletes that throw at a fairly high volume during adolescence) are likely to have some degree of humeral retroversion, a posterior torsion of the humerus that allows for more external rotation at the joint.

 Femoral Anteversion

This is a demonstration of femoral anteversion, but is still useful in illustrating how the angle at which a bone inserts at one joint (look at the femoral head angles here) can have a profound influence on the position of an adjacent joint (these knees are pointed straight ahead).

These studies are truly just the tip of the iceberg, as there is a larger body of evidence suggesting that the overwhelming majority of people in general, and especially athletes, have various forms of structural adaptations and sub-threshold pathologies. Importantly, not all of these individual will present with pain. In fact, the overwhelming majority will not. As Lorimer Moseley discusses in the video below, pain be tricky, as it is often context- and emotion-dependent. Furthermore, pain site and pain source are not always synonymous, as the irritated area may be doing everything right, but compensating for some other structural or functional limitation/dysfunction.

That said, structural adaptations will absolutely affect the individual’s movement. For example, an individual with FAI will have limited hip flexion range of motion, which will in turn limit squat depth, lunge depth, and step-up box height. If this limitation is ignored, the femoral head hits end range within the joint, which increases the stress to the hip labrum, but will also then cause compensatory movement, such as lateral flexion or rotation of the pelvis, or excessive flexion of the lumbar spine. If someone asked me how to tear a hip labrum and develop lumbar disc pathology simultaneously (I don’t get this question often), I would recommend they back squat past hip end-range repeatedly. In this scenario, you have compression from the ground up and the bar down going through a lumbopelvic complex that is undergoing multiplanar torsion, with at least one hip stuck at end range and grinding around that point.

As another example, consider a baseball player that presents with the same total rotation in both shoulders, but 20° more external rotation in his throwing arm. Can you imagine how doing exercises like a barbell snatch would drive rotation and other compensatory adjustments throughout the rest of the body as the throwing arm has significantly more motion overhead.

These are just a couple examples, to which there are many. The important thing is to recognize that athletes/clients present with unique structures and unique sets of postural and movement biases that will influence the execution of their training programs. Some of these things can be “corrected” or trained to a more optimal state, while others will simply just need to be accounted for in the individual’s exercise selection. Naturally, in order to recognize any of these things, it’s necessary to have a system of assessment/screening and a corrective approach.

In a couple days, I’ll be back with the second part of this series, “The Truth About Corrective Exercise”. If you’re interested in this topic, I’d encourage you to check out my 2-DVD set Optimizing Movement, which you can get for a $20 discount until next Saturday (December 7th), as part of a special “Extended Black Friday Sale”. Click the link below for more information!

Get Optimizing Movement Now!

“…one of the best DVDs I’ve ever watched”
“A must for anyone interested in coaching and performance!”

Optimizing Movement DVD Package

Click here for more information >> Optimizing Movement

To your success,

Kevin Neeld
OptimizingMovement.com
UltimateHockeyTraining.com

Please enter your first name and email below to sign up for my FREE Athletic Development and Hockey Training Newsletter!

References:

  1. Silvis, et al. (2011). High Prevalence of pelvic and hip magnetic resonance imaging findings in asymptomatic collegiate and professional hockey players. American Journal of Sports Medicine, 39(4), 715-721.
  2. Birmingham, et al. (2012). The effect of dynamic femoroacetabular impingement on pubic symphysis motion: a cadaveric study. American Journal of Sports Medicine, 40(5), 1113-1118.
  3. Philippon, et al. (2013). Prevalence of increased alpha angles as a measure of cam-type femoroacetabular impingement in youth ice hockey players. American Journal of Sports Medicine, 41(6), 1357-1362.
  4. Jakoi, et al. (2013). Sports hernia in National Hockey League players: does surgery affect performance? American Journal of Sports Medicine, 41(1), 107-110.
  5. Larson, et al. (2013). Increasing alpha angle is predictive of athletic-related “hip” and “groin” pain in collegiate national football league prospects. Arthroscopy, 29(3), 405-410.
  6. Hack, et al. (2010). Prevalence of cam-type femoracetabular impingement morphology in asymptomatic volunteers. The Journal of Bone and Joint Surgery, 92(14), 2436-2444.
  7. Jensen, et al. (1994). Magnetic resonance imaging of the lumbar spine in people without back pain. New England Journal of Medicine, 331(2), 69-73.
  8. Miniaci, et al. (2002). Magnetic resonance imaging of the shoulder in asymptomatic professional baseball pitchers. American Journal of Sports Medicine, 31(1), 66-73.

In an effort to better understand the mechanisms that contribute to injury and to design better programs to make our players more durable on the ice, I’ve read a ton of research on hip injuries, such as hip flexor/adductor tears, sports hernias, osteitis pubis, femoroacetabular impingement (FAI), and labral tears over the last several years. While I recognize that every injury is multi-factorial, I always frame injuries within the context of “what can we do to minimize risk, if not prevent them?”

It’s become clear along this journey that hip injuries tend to coincide with one another and the issue is almost always much more complex than simply “overuse” or “we found a labral tear, which needs to be repaired.” This latter point was highlighted by a 2011 study from Silvis et al. that demonstrated that 77% of the 39 NCAA D1 and pro hockey players had abnormal hip/groin MRI findings that were indicative of pathology, despite being entirely asymptomatic (Read the abstract here: High prevalence of pelvic and hip magnetic resonance imaging findings in asymptomatic collegiate and professional hockey players). This is a hockey-specific example, but there are others looking at different joints and in different populations that support the idea that something appearing broken may not always lead to pain and may not always need to be repaired.

When I first started to read about how FAI (a bony overgrowth of either the femoral head/neck offset and/or the acetabular hood; image below) limited hip flexion ROM, I began including some assessments in our intake to help screen for those limitations and, over time, developed a better eye for seeing suspicious compensations throughout various exercises. Despite there not being clear research evidence in support of FAI being developmental (there was a thought that it was congenital and/or developed from a slipped capital epiphysis, both of which are explanations I believe hold merit in a minority of cases), I never really had any doubt that the majority of these cases are progressive, likely resulting from poor femoral head tracking and too much time or volume spent at or near end-range hip flexion. This is important, because if things are progressive there is an opportunity to intervene. Given that this bony overgrowth is associated with increased anterior-superior labral wear/tearing and eventual osteoarthritis (see Streit et al, 2013, among others), the need be proactive in minimizing risk is important from both a short- and long-term perspective.

Hockey Training-Femoroacetabular Impingement

A demonstration of the bony overgrowth illustrative of FAI

In the last few months, several interesting articles have been published that continue to shed light on this issue. First, Larson et al. (2013) published data on NFL prospects in college and found that 90% of the 125 athletes they looked at and 87% of the hips (an alarming statistic!) had findings consistent with FAI. Of these players, those with symptoms tended to have a greater prevalence of CAM or Mixed FAI and osteitis pubis, but the only independent predictor of groin pain was how progressive the bony overgrowth was (the “alpha angle”). This is interesting for a few different reasons. As I mentioned in the past (See: An Updated Look at Femoroacetabular Impingement), hockey players aren’t the only population affected by this hip “abnormality”. This is the first study I’ve seen (admittedly, I’m not looking for other sports) that has used an athletic population not typically put in the most “at risk for hip injury” bucket. As a backdrop, it suggests that as the bony overgrowth gets worse, the athlete is more likely to be symptomatic.

This latter fact is not surprising given a 2012 study from Birmingham et al. that concluded:

“Dynamic femoroacetabular impingement as caused by the presence of a cam lesion causes internal rotation motion at the pubic symphysis. Repetitive loading of the symphysis by cam impingement is thought to lead to increased symphyseal motion, which is one possible precursor to athletic pubalgia.”

As a follow up, increased motion at the pubic symphysis is also a risk factor for osteitis pubis (inflammation in the area), which is another cause of groin pain.

So what does this have to do with hockey players? I’ll get there!

A study published last month from Philippon et al. provided solid evidence that FAI is in fact developmental/progressive, at least in the hockey population. In short, they imaged the hips of 61 youth hockey players from 10-18 years old, and found that:

  1. In PeeWees (10-12 y/o), 37% had FAI and 48% had labral tears
  2. In Bantams (13-15 y/o), 63% had FAI and 63% had labral tears
  3. In Midgets (16-19 y/o), 93% had FAI and 93% had labral tears

While there will inevitably need to be follow up studies done, this provides some interesting information as to how these structures develop, and really highlights how important it is for hockey coaches, strength and conditioning coaches, and sports medicine professionals to be aware of their existence. In short, a player may not be skating lower because he/she physically does not possess the structure to achieve a deeper stance (remember this is a BONY block; it can’t be stretched), and he/she may not be able to squat/lunge/deadlift like textbooks suggest they should be able to for the same reason.

While slightly tangential to the previous conversation, a 2013 study from Jakoi et al. found that NHL players were less productive in the 2 years following sports hernia surgery than they were prior to the surgery. This was especially true for the “veteran” group (7 or more years in the league) as they played significantly less games per season (from 70.5 to 49.0), scored less goals per season (17.1 to 7.8), had less assists (25.4 to 13.1), and weren’t able to play as much time per game (from 18.6 to 15.2 minutes). While the declines in games played, goals and assists weren’t significant for the younger group (6 or less years in the league) there was still a decline despite playing more minutes per game (from 16.4 up to 18.4). When you factor in the total minutes played per season (games played x minutes per night), the younger group had almost equivalent minutes pre- and post- surgery (1077.48 vs. 1074.56), but still averaged less goals and assists following the surgery. This certainly isn’t to dismiss the potential benefits, and in some cases the necessity of the surgery, but instead should be taken as another argument for the importance of recognizing risk factors and intervening early.

There is a theme to this discussion. While it may not be possible to PREVENT 100% of injuries, it is important to do whatever is possible to screen/assess for risk factors, provide corrective strategies when appropriate, and coach around limitations that do exist so as to not exacerbate the problem. Given the data on how prevalent structural abnormalities are in athletes in a variety of sports, as well as the short- AND long-term implications of these injuries, taking the appropriate steps to improve an athlete’s durability may not just change your season (the two goal decrease in production could be the difference between making the playoffs or not, winning the championship or not), it may change his/her life.

Over the last several years, I’ve gotten a lot of questions about how I assess our players, what I’m finding, and how this influences my programming. In my new DVD Optimizing Movement, I cover these very topics in detail. For the first time ever, I discuss the exact assessment protocol I use (including videos of the assessments), how we integrate corrective strategies into group settings (and how you can too), how we alter exercise selection based on assessment findings, and the 4 things that underlie correctly performing almost every exercise. The DVD has gotten outstanding feedback from everyone ranging from personal trainers, to sports med professions in professional sports, to collegiate strength and conditioning coaches, to private physical therapists. Check it out at the link below!

Optimizing Movement DVD Package

Click here for more information and to watch the trailer! >> Optimizing Movement

To your success,

Kevin Neeld
UltimateHockeyTraining.com

References:

  1. Silvis, et al. (2011). High Prevalence of pelvic and hip magnetic resonance imaging findings in asymptomatic collegiate and professional hockey players. American Journal of Sports Medicine, 39(4), 715-721.
  2. Streit, et al. (2013). The shape of the proximal femur influences acetabular wear patterns over time. Clinical Orthopaedics and Related Research, 471(2), 478-485.
  3. Larson, et al. (2013). Increasing alpha angle is predictive of athletic-related “hip” and “groin” pain in collegiate national football league prospects. Arthroscopy, 29(3), 405-410.
  4. Birmingham, et al. (2012). The effect of dynamic femoroacetabular impingement on pubic symphysis motion: a cadaveric study. American Journal of Sports Medicine, 40(5), 1113-1118.
  5. Philippon, et al. (2013). Prevalence of increased alpha angles as a measure of cam-type femoroacetabular impingement in youth ice hockey players. American Journal of Sports Medicine, 41(6), 1357-1362.
  6. Jakoi, et al. (2013). Sports hernia in National Hockey League players: does surgery affect performance? American Journal of Sports Medicine, 41(1), 107-110.

Please enter your first name and email below to sign up for my FREE Athletic Development and Hockey Training Newsletter!

Use CODE: "Neeld15" to save 15%